Hadoop权威指南-读书笔记-02-关于MapReduce

Hadoop权威指南-读书笔记

记录一下读这本书的时候觉得有意思或者重要的点~

在这里插入图片描述
还是老样子~挑重点记录哈😁有兴趣的小伙伴可以去看看原著😊

第二章 关于MapReduce

  • MapReduce是一种可用于数据处理的编程模型。

在这里插入图片描述

  • MapReduce程序本质上是并行运行的,因此可以将大规模的数据分析任务分发给任何一个拥有足够多机器的数据中心。

在这里插入图片描述

  • MapReduce的优势在于处理大规模数据集。

Tips:第二章序言里比较重要的点都在上面啦~🤣


2.1 使用Hadoop来分析气象数据集

气象数据集这一小节举了挖掘气象数据的例子,博主把这个例子的核心摘录了出来。

  • 为了充分利用Hadoop提供的并行处理优势,我们需要将查询表示成MapReduce作业。完成某种本地端的小规模测试之后,就可以把作业部署到在集群上运行。

map和reduce

MapReduce任务过程分为两个处理阶段:map阶段和reduce阶段。

每阶段都以键值对作为输入和输出,其类型由程序员来选择。程序员还需要写两个函数:map函数和reduce 函数。

在这里插入图片描述

map阶段的输入是NCDC原始数据。我们选择文本格式作为输入格式,将数据集的每一行作为文本输入。

键是某一行起始位置相对于文件起始位置的偏移量,不过我们不需要这个信息,所以将其忽略。

我们的map函数很简单。由于我们只对年份和气温属性感兴趣,所以只需要取出这两个字段数据。

在本例中,map函数只是一个数据准备阶段,通过这种方式来准备数据,使reduce函数能够继续对它进行处理:即找出每年的最高气温。

map函数还是一个比较适合去除已损记录的地方:此处,我们筛掉缺失的、可疑的或错误的气温数据。

map函数的功能仅限于提取年份和气温信息(以粗体显示),并将它们作为输出(气温值已用整数表示):

在这里插入图片描述

map函数的输出经由MapReduce框架处理后,最后发送到reduce函数。

这个处理过程基于键来对键-值对进行排序和分组。因此,在这一示例中,reduce函数看到的是如下输入:

在这里插入图片描述

在这里插入图片描述


下面是这个例子所体现出的比较重要的MR处理的流程图:
在这里插入图片描述


2.2 Java MapReduce

Java实现MR程序需要三样东西:一个map函数、一个reduce函数和一些用来运行作业的代码。

  • map函数由Mapper类来表示,后者声明了一个抽象的map()方法。

在这里插入图片描述

  • 这个Mapper类是一个泛型类型,它有四个形参类型,分别指定map数的输入键、输入值、输出键和输出值的类型。
  • 就现在这个例子来说,输入键是一个长整数偏移量,输入值是一行文本,输出键是年份,输出值是气温(整数)。
  • Hadoop本身提供了一套可优化网络序列化传输的基本类型,而不直接使用Java内嵌的类型。

Tips:我的这篇文章讲了为啥不用Java内嵌的序列化—Hadoop序列化详解

  • 这些类型都在 org.apache.hadoop.io包中。这里使用 LongWritable 类型(相当于Java的Long类型)、Text类型(相当于Java中的String 类型)和IntWritable类型(相当于Java的Integer类型)。
  • map()方法的输入是一个键和一个值。我们首先将包含有一行输入的Text值转换成Java的String类型,之后用substring()方法提取我们感兴趣的列。

在这里插入图片描述

  • map()方法还提供Context实例用于输出内容的写入。在这种情况下,我们将年份数据按Text对象进行读/写(因为我们把年份当作键),将气温值封装在Intwritable 类型中。
  • 只有气温数据不缺并且所对应质量代码显示为正确的气温读数时,这些数据才会被写入输出记录中。

在这里插入图片描述

  • 同样,reduce函数也有四个形式参数类型用于指定输入和输出类型。
  • reduce函数的输入类型必须匹配map 函数的输出类型:即Text类型和Intwritable 类型。
  • 在这种情况下,reduce函数的输出类型也必须是Text和IntWritable类型,分别输出年份及其最高气温。
    在这里插入图片描述

这个最高气温是通过循环比较每个气温与当前所知最高气温所得到的。


第三部分代码负责运行MR作业。

在这里插入图片描述

  • Job对象指定作业执行规范。
  • 我们可以用它来控制整个作业的运行。

在这里插入图片描述

  • 我们在Hadoop 集群上运行这个作业时,要把代码打包成一个JAR文件(Hadoop 在集群上发布这个文件)。

在这里插入图片描述

  • 不必明确指定JAR文件的名称,在Job对象的setJarByClass()方法中传递一个类即可,Hadoop利用这个类来查找包含它的JAR文件,进而找到相关的· JAR 文件。

  • 构造 Job对象之后,需要指定输入和输出数据的路径。

  • 调用FileInputFormat类的静态方法 addInputPath()来定义输入数据的路径,这个路径可以是单个的文件、一个目录(此时,将目录下所有文件当作输入)或符合特定文件模式的一系列文件。
    在这里插入图片描述

  • 由函数名可知,可以多次调用 addInputPath()来实现多路径的输入。


  • 调用 File0utputFormat 类中的静态方法 setOutputPath()来指定输出路径(只能有一个输出路径)。

  • 这个方法指定的是reduce函数输出文件的写入目录。
    在这里插入图片描述

  • 在运行作业前该目录是不应该存在的,否则Hadoop会报错并拒绝运行作业。这种预防措施的目的是防止数据丢失(长时间运行的作业如果结果被意外覆盖,肯定是非常恼人的)。


  • 接着,通过 setMapperClass()和setReducerclass()方法指定要用的 map 类型和reduce 类型。
    在这里插入图片描述

  • setOutputKeyClass()和setOutputValueClass()方法控制reduce 函数的输出类型,并且必须和Reduce类产生的相匹配。

在这里插入图片描述

  • map数的输出类型默认情况下和reduce 函数是相同的,因此如果mapper产生出和reducer相同的类型时(如同本例所示),不需要单独设置。
  • 但是,如果不同,则必须通过setMap0utputKeyClass()和setMapOutputValueClass()方法来设置 map 函数的输出类型。

  • waitForCompletion()方法提交作业并等待执行完成。该方法唯一的参数是一个标识,指示是否已生成详细输出。

在这里插入图片描述

  • 当标识为true(成功)时,作业会把其进度信息写到控制台。
  • waitForcompletion()方法返回一个布尔值,表示执行的成(true)败(false),这个布尔值被转换成程序的退出代码0或者1。

运行测试

写好MapReduce作业之后,通常要拿一个小型数据集进行测试以排除代码问题。

在这里插入图片描述

  • 5个map输入记录产生5个map输出记录(由于mapper为每个合法的输入记录产生一个输出记录),随后,分为两组的5个reduce输入记录(一组对应一个唯一的键)产生两个reduce 输出记录。
  • 输出数据写人output目录,其中每个reducer都有一个输出文件。
  • 我们例子中的作业只有一个 reducer,所以只能找到一个名为part-r-00000的文件:

在这里插入图片描述


2.3 横向扩展

  • MapReduce作业(job)是客户端需要执行的一个工作单元:它包括输入数据、MapReduce程序和配置信息。
  • Hadoop将作业分成若干个任务(task)来执行,其中包括两类任务:map任务和reduce任务。
  • 这些任务运行在集群的节点上,并通过YARN进行调度。
  • 如果一个任务失败,它将在另一个不同的节点上自动重新调度运行。

❤❤❤❤❤ 分片重点:

  • Hadoop将 MapReduce 的输入数据划分成等长的小数据块,称为输入分片(input split)或简称“分片”。

在这里插入图片描述

  • Hadoop为每个分片构建一个map任务,并由该任务来运行用户自定义的map 函数从而处理分片中的每条记录。

  • 拥有许多分片,意味着处理每个分片所需要的时间少于处理整个输入数据所花的时间。

  • 因此,如果我们并行处理每个分片,且每个分片数据比较小,那么整个处理过程将获得更好的负载平衡,因为一台较快的计算机能够处理的数据分片比一台较慢的计算机更多,且成一定的比例。即使使用相同的机器,失败的进程或其他并发运行的作业能够实现满意的负载平衡,并且随着分片被切分得更细,负载平衡的质量会更高。

  • 另一方面,如果分片切分得太小,那么管理分片的总时间和构建map任务的总时间将决定作业的整个执行时间。

  • 对于大多数作业来说,一个合理的分片大小趋向于HDFS的一个块的大小,默认是128MB,不过可以针对集群调整这个默认值(对所有新建的文件),或在每个文件创建时指定。


❤❤❤❤❤ 数据本地化重点:

在这里插入图片描述

  • Hadoop在存储有输入数据(HDFS中的数据)的节点上运行map任务,可以获得最佳性能,因为它无需使用宝贵的集群带宽资源。这就是所谓的“数据本地化优化”(data locality optimization)

在这里插入图片描述

  • 但是,有时对于一个 map 任务的输入分片来说存储该分片的HDFS数据块复本的所有节点可能正在运行其他map任务,此时作业调度需要从某一数据块所在的机架中的一个节点上寻找一个空闲的 map 槽(slot)来运行该map任务分片。

在这里插入图片描述

  • 仅仅在非常偶然的情况下(该情况基本上不会发生),会使用其他机架中的节点运行该map任务,这将导致机架与机架之间的网络传输。图2-2显示了这三种可能性。

  • 现在我们应该清楚为什么最佳分片的大小应该与块大小相同:因为它是确保可以存储在单个节点上的最大输入块的大小。
  • 如果分片跨越两个数据块,那么对于任何一个HDFS节点,基本上都不可能同时存储这两个数据块,因此分片中的部分数据需要通过网络传输到map任务运行的节点。与使用本地数据运行整个map任务相比,这种方法显然效率更低。

  • map任务将其输出写入本地硬盘,而非HDFS。这是为什么?
  • 因为map的输出是中间结果:该中间结果由reduce任务处理后才产生最终输出结果,而且一旦作业完成,map的输出结果就可以删除。
  • 因此,如果把它存储在HDFS中并实现备份,难免有些小题大做。
  • 如果运行map任务的节点在将map中间结果传送给reduce 任务之前失败,Hadoop将在另一个节点上重新运行这个map任务以再次构建 map 中间结果。

reduce任务并不具备数据本地化的优势,单个reduce任务的输入通常来自于所有mapper的输出。

在本例中,我们仅有一个reduce任务,其输入是所有map任务的输出。

因此,排过序的 map 输出需通过网络传输发送到运行reduce任务的节点。

数据在reduce端合并,然后由用户定义的reduce 函数处理。reduce 的输出通常存储在 HDFS中以实现可靠存储。

在这里插入图片描述

如第3章所述,对于reduce输出的每个HDFS块,第一个复本存储在本地节点上,其他复本出于可靠性考虑存储在其他机架的节点中。

因此,将reduce的输出写入 HDFS 确实需要占用网络带宽,但这与正常的 HDFS 管线写入的消耗一样。


❤❤❤❤❤ 数据分区重点:

  • reduce 任务的数量并非由输入数据的大小决定,相反是独立指定的。

  • 如果有好多个reduce任务,每个map任务就会针对输出进行分区(partition),即为每个reduce任务建一个分区。

在这里插入图片描述

  • 每个分区有许多键(及其对应的值),但每个键对应的键-值对记录都在同一分区中。
  • 分区可由用户定义的分区函数控制,但通常用默认的 partitioner 通过哈希函数来分区,很高效。

在这里插入图片描述
一般情况下,多个reduce任务的数据流如图2-4所示。

  • 该图清楚地表明了为什么map任务和reduce任务之间的数据流称为shuffle(混洗),因为每个reduce 任务的输入都来自许多map任务。
  • shuffle一般比图中所示的更复杂,而且调整混洗参数对作业总执行时间的影响非常大,详情参见7.3节。

  • 最后,当数据处理可以完全并行(即无需混洗时),可能会出现无reduce任务的情况(示例参见8.2.2节)。

在这里插入图片描述

  • 在这种情况下,唯一的非本地节点数据传输是map任务将结果写人HDFS(参见图2-5)。

❤❤❤❤❤ combiner函数重点:

集群上的可用带宽限制了MapReduce作业的数量,因此尽量避免map和reduce任务之间的数据传输是有利的。

Hadoop允许用户针对map任务的输出指定一个combiner(就像 mapper和reducer 一样),combiner 函数的输出作为reduce 函数的输入。

由于combiner属于优化方案,所以Hadoop无法确定要对一个指定的map任务输出记录调用多少combiner(如果需要)。

换而言之,不管调用combiner 多少次,0次、1次或多次,reducer的输出结果都是一样的。


书里给了一个非常棒的示例,讲解了combiner函数是如何做到—尽量避免map和reduce任务之间的数据传输~

eg:
第一个map的输出:
在这里插入图片描述

第二个map的输出:

在这里插入图片描述

reduce被调用时,输入如下:
在这里插入图片描述
因为25为该列数据中最大的,所以它的输出如下:

在这里插入图片描述


但其实我们可以像使用reduce函数那样,使用combiner找出每个map任务输出结果中的最高气温。

如此一来,reduce函数调用时将被传入以下数据:

在这里插入图片描述
传输的数据量就会少很多~😂

reduce输出的结果和以前一样。

在这里插入图片描述


但并非所有场合都适用类似这种优化。

例如,如果我们计算平均气温,就不能用求平均函数mean作为我们的combiner函数,因为

在这里插入图片描述

这里的场景—combiner函数不能取代reduce函数。为什么呢?
我们仍然需要reduce 函数来处理不同map输出中具有相同键的记录。

但combiner函数能帮助减少mapper和reducer 之间的数据传输量,因此,单纯就这点而言,在MapReduce 作业中是否使用cobiner函数还是值得斟酌的。


仅供学习使用~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/769403.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

行业模板|DataEase旅游行业大屏模板推荐

DataEase开源数据可视化分析工具于2022年6月发布模板市场(https://templates-de.fit2cloud.com),并于2024年1月新增适用于DataEase v2版本的模板分类。模板市场旨在为DataEase用户提供专业、美观、拿来即用的大屏模板,方便用户根据…

网络安全--计算机网络安全概述

文章目录 网络信息系统安全的目标网络安全的分支举例P2DR模型信息安全模型访问控制的分类多级安全模型 网络信息系统安全的目标 保密性 保证用户信息的保密性,对于非公开的信息,用户无法访问并且无法进行非授权访问,举例子就是:防…

Andriod安装termux并换源

问题汇总 Error: The repository ‘https://mirrors.tuna.tsinghua.edu.cn/termux/termux-package-24 stable Release’ does not have a Release file. 更换源(这里使用的是清华大学源) 打开文件 nano $PREFIX/etc/apt/sources.list手动修改 deb htt…

Powershell 获取电脑保存的所有wifi密码

一. 知识点 netsh wlan show profiles 用于显示计算机上已保存的无线网络配置文件 Measure-Object 用于统计数量 [PSCustomObject]{ } 用于创建Powershell对象 [math]::Round 四舍五入 Write-Progress 显示进度条 二. 代码 只能获取中文Windows操作系统的wifi密码如果想获取…

ETCD概述--使用/特性/架构/原理

ETCD概述 ETCD是一个高度一致的分布式键值存储, 它提供了一种可靠的方式来存储需要由分布式系统或机器集群访问的数据(高可用, 强一致性)​全局的配置服务中心. 本文将介绍其特性、相关操作和常见的应用场景. 如果想了解更多, 请查阅我的技术博客: https://dingyuqi.com 特性 …

红酒与文学:探索文字背后的酒香

在文学的海洋中,红酒如同一股不同的香风,轻轻拂过书页,为文字的世界增添了一抹诱人的色彩。今天,就让我们一起踏上这段奇妙的旅程,探索红酒与文学之间的奇妙联系,感受文字背后的酒香,特别是以雷…

第11章 规划过程组(二)(11.8排列活动顺序)

第11章 规划过程组(二)11.8排列活动顺序,在第三版教材第388~389页;文字图片音频方式 第一个知识点:主要工具与技术(重要知识点) 1、紧前关系绘图法(PDM)或前导图法&#…

宝塔Linux面板配置环境 + 创建站点

一、安装 (1)进入宝塔官网 https://www.bt.cn/new/index.html (2)点击“ 立即免费安装 ”,选择 Centos安装脚本 (3)进入 ssh 输入以下命令安装宝塔 yum install -y wget && wget -O …

【Docker安装】OpenEuler系统下部署Docker环境

【Docker安装】OpenEuler系统下部署Docker环境 前言一、本次实践介绍1.1 本次实践规划1.2 本次实践简介二、检查本地环境2.1 检查操作系统版本2.2 检查内核版本2.3 检查yum仓库三、卸载Docker四、部署Docker环境4.1 配置yum仓库4.2 检查可用yum仓库4.3 安装Docker4.4 检查Docke…

Golang 依赖注入设计哲学|12.6K 的依赖注入库 wire

一、前言 线上项目往往依赖非常多的具备特定能力的资源,如:DB、MQ、各种中间件,以及随着项目业务的复杂化,单一项目内,业务模块也逐渐增多,如何高效、整洁管理各种资源十分重要。 本文从“术”层面&#…

Linux高并发服务器开发(十一)UDP通信和本地socket通信

文章目录 1 TCP和UDP的区别2 UDPAPI流程服务端流程客户端流程 代码服务端客户端 3 本地socket通信服务端客户端客户端代码 1 TCP和UDP的区别 2 UDP API 流程 服务端流程 客户端流程 代码 服务端 #include<sys/socket.h> #include<stdio.h> #include<arpa/in…

图像增强方法汇总OpenCV+python实现【第一部分:常用图像增强方法】

图像增强方法汇总OpenCVpython实现【第一部分】 前言常用的图像增强方法1. 旋转&#xff08;Rotation&#xff09;&#xff1a;2. 平移&#xff08;Translation&#xff09;&#xff1a;3. 缩放&#xff08;Scaling&#xff09;&#xff1a;4. 剪切变换&#xff08;Shear Trans…

Mac本地部署大模型-单机运行

前些天在一台linux服务器&#xff08;8核&#xff0c;32G内存&#xff0c;无显卡&#xff09;使用ollama运行阿里通义千问Qwen1.5和Qwen2.0低参数版本大模型&#xff0c;Qwen2-1.5B可以运行&#xff0c;但是推理速度有些慢。 一直还没有尝试在macbook上运行测试大模型&#xf…

bug,属性注入时为null

因为在使用拦截器时使用的是new的这个类放容器的 解决方法&#xff1a; 使用有参构造器&#xff0c;在new对象时传入值

SpringBoot 通过Knife4j集成API文档 在线调试

介绍 Knife4j 是一款基于 Swagger 构建的增强型 API 文档生成工具&#xff0c;它提供了更多的定制化功能和界面优化&#xff0c;使得生成的 API 文档更加美观和易用。它可以帮助开发者快速生成和管理 API 文档&#xff0c;支持在线调试和交互。 依赖 <!--knife4j--> &…

使用Python3和Selenium打造百度图片爬虫

开篇 本文的目的在于实现一个用来爬取百度图片的爬虫程序,因该网站不需要登录&#xff0c;所以相对来说较为简单。下面的爬虫程序中我写了比较多的注释&#xff0c;以便于您的理解。 准备 请确保电脑上已经安装了与chrome浏览器版本匹配的chromeDriver&#xff0c;且电脑中已经…

【C++】解决 C++ 语言报错:Dangling Pointer

文章目录 引言 悬挂指针&#xff08;Dangling Pointer&#xff09;是 C 编程中常见且危险的错误之一。当程序试图访问指向已释放内存的指针时&#xff0c;就会发生悬挂指针错误。这种错误不仅会导致程序崩溃&#xff0c;还可能引发不可预测的行为和安全漏洞。本文将深入探讨悬…

C++ | Leetcode C++题解之第214题最短回文串

题目&#xff1a; 题解&#xff1a; class Solution { public:string shortestPalindrome(string s) {int n s.size();vector<int> fail(n, -1);for (int i 1; i < n; i) {int j fail[i - 1];while (j ! -1 && s[j 1] ! s[i]) {j fail[j];}if (s[j 1] …

【Linux】--help,man page , info page

我们知道Linux有很多的命令&#xff0c;那LInux要不要背命令&#xff1f; 答案是背最常用的那些就行了 那有的时候我们想查询一些命令的详细用法该怎么办呢&#xff1f; 这里我给出3种方法 1.--help --help的使用方法很简单啊 要查询的命令 --help 我们看个例子 这里我只…

Object 类中的公共方法详解

Object 类中的公共方法详解 1、clone() 方法2、equals(Object obj) 方法3、hashCode() 方法4、getClass() 方法5、wait() 方法6、notify() 和 notifyAll() 方法 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在 Java 中&#xff0c;Object…